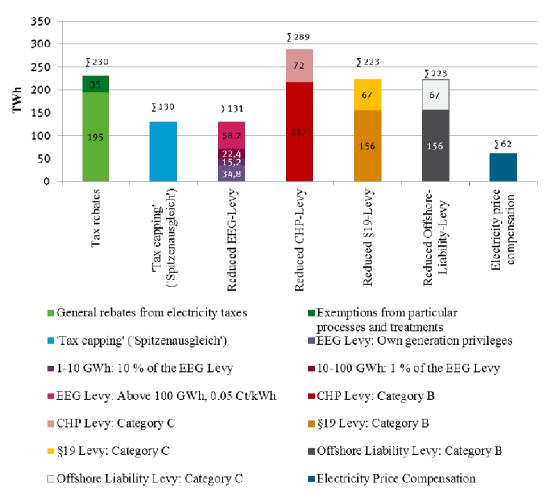


Osnabrück, Sep. 2, 2016

- 1. Background
- 2. Methodology
- 3. Scenario design and results
- 4. Conclusions


1. Background

Background

- study "Approaches for further development of public finances" in Germany
 - ⇒ conducted by FÖS, Öko-Institute and GWS for the German Federal Environmental Agency between 2014 and 2016
- many exemptions from taxes and levies distort energy prices
 - ➡ To prevent loss in international competitiveness (carbon leakage)
- practical and smart proposal for reform and harmonisation of current exemptions
 - ⇒ to eliminate or to sidestep existing perverse incentives
- macroeconomic impact analysis with PANTA RHEI

Background

Estimates of electricity volumes under present exemption regime benefiting from rebates (TWh, 2014)

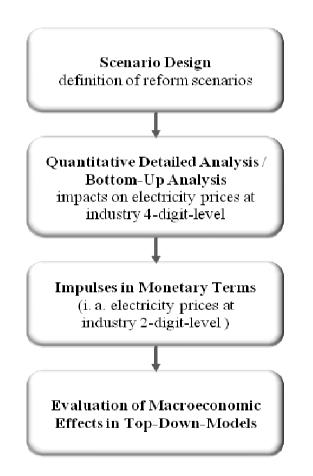
 \odot 2016 GWS mbH

Background

Reform proposal: levels of rebate and requirements

	Level 1	Level 2	Level 3	Hardship cases		
Reduction of	70-80 %	50-70 %	25-50 %	50 %		
the Fees						
Industry	Primary sector traded on		-	Firms within the		
Sector	international commodity markets			manufacturing sector		
Criteria A	AND	OR				
	Electricity price compensation		-			
	list from EU-ETS					
Industry	Trade intensity (-				
Sector	sector > 30 %					
Criteria B	AND					
	Electricity intens					
	added (GVA)					
Firm Level	Electricity intens	Electricity intensity >				
Criteria C		2.5 MWh/€ 1,000 GVA				

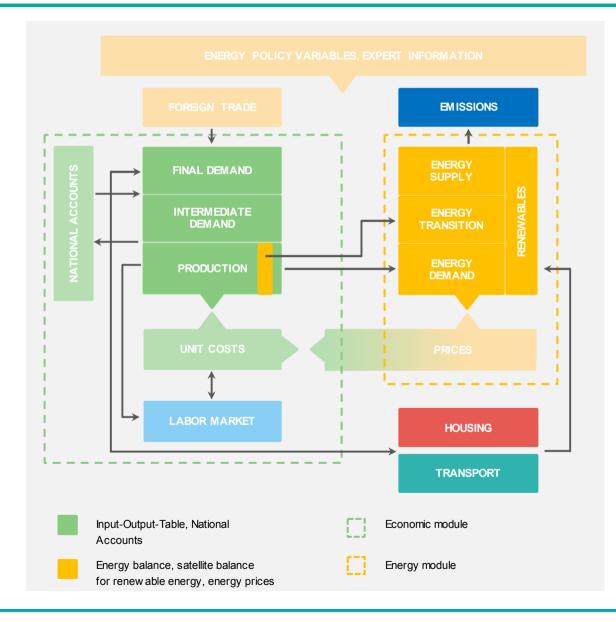
Recycling of additional revenues: labor cost reduction and investment in energy efficiency


© 2016 GWS mbH

2. Methodology

Methodology

⇒ Impact analysis

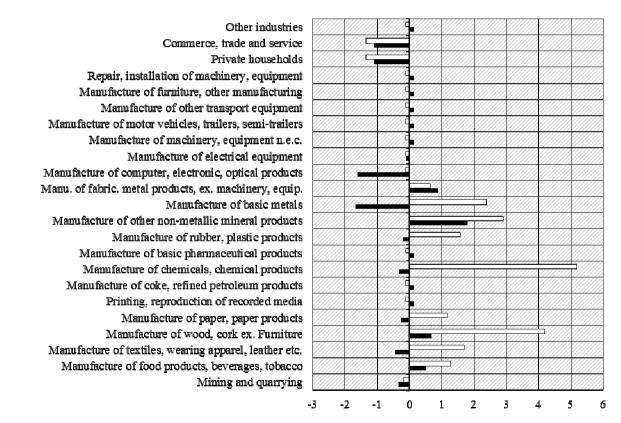

Model PANTA RHEI

- INFORGE + energy & environment
- Macroeconomic energy and environmental model
 - Based on official statistics (SNA, time series of IOT)
 - Bottom-up (63/73 sectors)
 - Fully interdependent
 - Energy balance systematic
 - Parameters econometrically derived from historical time series, no neoclassical general equilibrium

=> macroeconometric, not CGE

- Suitable for simulation of direct, indirect and induced effects
 - \Rightarrow Net impacts
- Electricity prices for 4 user groups: Extended to different prices for 63 industries and pr. households in the project

Methodology: PANTA RHEI



3. Scenario design and results

Scenario design

Effects on electricity prices (after reimbursement) in selected industries in the MIN- and MAX-scenario compared to the reference scenario, 2016 in Cent/kWh

DMAX

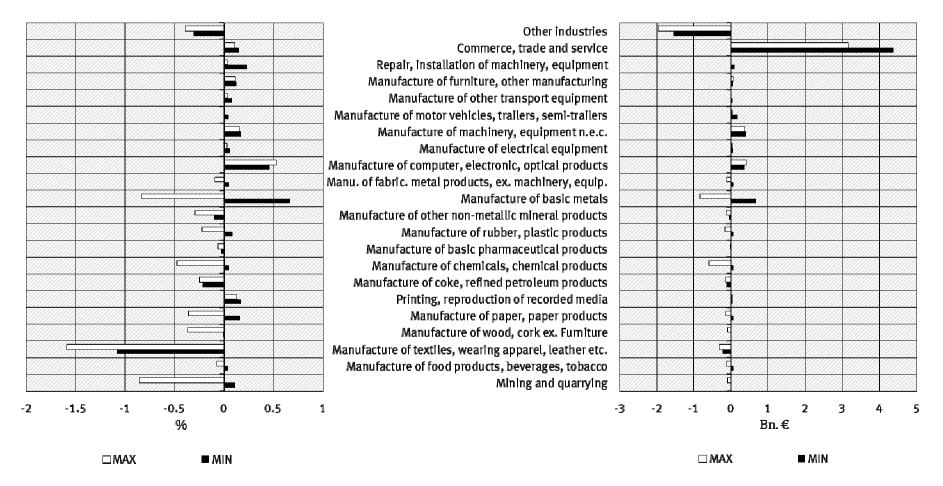
■MIN

Main drivers

- Electricity costs are redistributed between industries (and households)
- Higher tax revenues reduce labor cost and increase investment
- Impacts on industry level depend on (changes in)
 - Electricity cost
 - Labor cost
 - Export shares
 - Investment
 - International competition / price setting
 - Macro level

© 2016 GWS mbH

Results


Macroeconomic effects (2016)

	MIN	MAX	MIN	MAX
Components of GDP (price-adjusted)	deviations in bill. ϵ		deviations in %	
GDP	5.13	0.82	0.18	0.03
Private consumption	2.13	1.62	0.14	0.10
Government consumption	0.10	0.09	0.02	0.02
Equipment	1.44	1.66	0.49	0.57
Construction	0.09	-0.06	0.03	-0.02
Exports	1.00	-1.76	0.07	-0.13
Imports	-0.38	0.65	-0.03	0.05
Price indices (2010 = 100)	deviations		deviations in %	
Private consumption	-0.06	-0.02	-0.05	-0.02
Production	-0.09	0.04	-0.08	0.04
Labour market	deviations in 1,000		deviations in %	
Employment	18.05	12.43	0.04	0.03

Results

Sector impacts

⇒ Real production, deviations in % and Bn. € (2016)

4. Conclusions

Conclusions

- Analysis is quite challenging due to heterogeneous electricity prices on industry level
 - ⇒ Combination of detailed analysis on the 4-digit level
 - ⇒ Translation into electricity prices on 2-digit level
- Other studies show negative economic impacts (and carbon leakage) of unilateral elimination of exemptions on energy taxes and levies
- Smart tax reform
 - ⇒ some scope for reduction of tax exemptions
 - ⇒ small positive economic and environmental effects
 - ⇒ elimination of exemptions needs international coordination

CONTACT PERSON

Thank you for your attention.

Christian Lutz T +49 (0) 40933 - 120 E lutz @ gws-os.com Head of division energy and climate

Confidentiality of Information (OPTIONAL)

The content of this document is strictly confidential and must not be circulated or used without permission of GWS.