

Disaggregating and hybridizing the FIGARO EU-ICIOT to estimate material footprints

Birte Ewers, Karl Schoer, Jan Weinzettel, Monika Dittrich

29.02.2024

Introduction Calculation of material footprints for the EU

Material footprint: indicator used for monitoring the SDGs (goals related to sustainable economic growth and sustainable consumption and production)

Domestic extraction + Imports in Raw Material Equivalents (RME) – Exports in RME


Update and further development of the EU-RME model

 Project team: Birte Ewers, Karl Schoer, Jan Weinzettel, Richard Wood, Sonja Limberger, Florian Petri, Monika Dittrich (former member)
 Project commissioned by: Eurostat, 2023-2026

Introduction Calculation of material footprints for the EU

Material footprint (RMC) per capita in the EU

Source: Eurostat (env_ac_rme)

Introduction Calculation of material footprints for the EU

EU-RME Model Single-region hybrid IOT model (182 product groups) **ADTA** assumption

RME indicators for the EU

RME Country tool Coefficient approach

RME indicators for EU countries

eurostat	
Documentation of the	
EU RME model	
February 2024	

Introduction Objective

EU-RME Model Single-region hybrid IOT model (182 product groups) ADTA assumption

RME indicators for the EU

RME Country tool Coefficient approach

RME indicators for EU countries

FIGARO EU-ICIOT 64 product groups 27 EU countries 18 non-EU countries 1 RoW region Disaggregation and hybridization

1) EU countries using data from Eurostat

2) Non-EU countries using data from international sources

Future MRIO EU-RME Model Disaggregated hybrid Model Based on the EU-ICIOT

Aim: Estimation of material footprint indicators

Introduction Objective

FIGARO EU-ICIOT

- MRIO published by Eurostat
- Annual update, current time series: 2010-2021
- 64 product groups
- Regions:
 - EU27, Switzerland, Norway
 - G20: United Kingdom, Russia, Argentina, Brazil, Canada, Mexico, United States, South Africa, China, Indonesia, India, Japan, South Korea, Saudi Arabia, Turkey, Australia
 - RoW region

Development of a harmonized hybrid EU-RME MRIO model Characteristics

MRIO model optimized for material footprint calculations

- 46 regions (EU27, 18 non-EU countries, 1 RoW region), 2010-2022
- Differentiation of 163 product groups to reduce aggregation error
 - Mining: disaggregated into 30 separate product groups
 - Agriculture: ... 20 product groups
 - Minerals: ... 8 product groups
 - Metals & metal products: ... 22 product groups
- Hybrid model (mixed monetary & physical units, 67 products in physical units)
 - Agriculture/Fishery/Forestry/Minerals in kt
 - Energy carriers in ktoe
 - Metals and metal ores in kt metal content
 - Minerals in kt

Development of a harmonized hybrid EU-RME MRIO model Characteristics

Rationale for hybridization

• Aim: improve the allocation of embodied raw materials to consumers

Criteria for selecting product groups for hybridization:

- High degree of raw material intensity
- High degree of homogeneity
- Availability of information on output in physical terms
- Availability of information on the sales structure in physical terms (energy/agriculture)

Development of a harmonized hybrid EU-RME MRIO model Methods

1. Preparation of input data

- EU: Eurostat (Structural Business Statistics, Prodcom, MFA, Agricultural Accounts, Energy Balance), balanced ITGS trade dataset, BGS Mining
- Non-EU: UN-IRP Material Flows, IEA/UNSD Energy balance, FAO Agricultural statistics, UNIDO Industry Statistics, USGS/BGS Mining and Metal production and BACI Balanced trade data

2. Disaggregation of the monetary EU-ICIOT

- Country-by-country approach
- **3.** Hybridization of the disaggregated EU-ICIOT
- 4. Calculation of material footprints

→ feasible only because we have the EU-ICIOT as a basis for the disaggregation,

Development of a harmonized hybrid EU-RME MRIO model Methods: Data sources for non-EU countries

Data	Monetary data	Data in physical units
Agriculture, forestry and fishing (output)	FAO Agricultural statistics	 UN-IRP Material flows FAO Agricultural statistics FAO Fishery statistics
Mining and metals, minerals (output)	 UNIDO MinStat UNIDO IndStat (ISIC Rev. 3/4) Data in physical units and conversion with prices 	 UN-IRP Material flows USGS Mineral yearbooks BGS World Mineral Production Austrian World Mining Data
Manufacturing (output)	• UNIDO IndStat (ISIC Rev. 3/4)	• Wood: FAO
Energy (output)	 Data in phyiscal units and conversion to prices 	 UN-IRP Material flows IEA energy balances (UNSD energy balances)

Development of a harmonized hybrid EU-RME MRIO model Methods: Data sources for non-EU countries

Data	Monetary data	Data in physical units
EU-ICIOT for 2010-2021	• FIGARO EU-ICIOT, 2023 edition	
Bilateral trade (all product groups)	 ITGS trade dataset at HS6 level 	 BACI trade dataset at HS6 level (probably)
Domestic extraction (extension)		UN-IRP Domestic extraction
Generic input coefficients	 Input coefficients from German 3R-model RoW region 	

Country-by-country approach

- We separate the EU-ICIOT into country blocks and apply the disaggregation algorithm separately for each country.
 - Total imports and exports (by 163 product groups) between two regions are fixed beforehand.
 - The disaggregated MRIO is balanced using GRAS to match the original aggregated EU-ICIOT.

• Sources: e.g. Junius & Ososterhaven (2003): The solution of updating or regionalizing a matrix with both positive and negative entries. Economic Systems Research, 15(1), Temurshoev et al. (2013): A note on the GRAS method, Economic Systems Research 25(3).

Generalized RAS algorithm (GRAS/iterative scaling)

- **Purpose:** balance input-output tables to ensure that constraints are met
- for IOTs with negative entries (e.g. in changes in inventories)
- Positive entries are multiplied and negative entries are divided by correction factor
- In our case, **constraints** are:
 - Total domestic use (row sum)
 - Total output (column sum)
 - Original EU-ICIOT with 64 product groups

• Sources: e.g. Junius & Ososterhaven (2003): The solution of updating or regionalizing a matrix with both positive and negative entries. Economic Systems Research, 15(1), Temurshoev et al. (2013): A note on the GRAS method, Economic Systems Research 25(3).

Simplified example: three regions (A/B/C), two product groups (P1/P2) in aggregated form, one final demand category

		C. A		С. В		С. С		C. A	С. В	C. C
		P1	P2	P1	P2	P1	P2	fd	fd	fd
C. A	P1									
	P2									
С. В	P1									
	P2									
C. C	P1									
	P2									
TVA										

Simplified example: separate country blocks, aggregation of imports and domestic production to a single IOT, Here: region C.A

		С. А		C. A	Total C. A cons	Export	Total output
		P1	P2	fd			
C. A	P1						
	P2						
Total IMC input							
TVA							
Total input							

Simplified example: disaggregation at the product level for region C.A

		C. A					C. A	Total C. A cons	Export	Total output
		P1a	P1b	P1c	P2a	P2b	fd			
C. A	P1a									
	P1b									
	P1c									
	P2a									
	P2b									
Total IMC input										
TVA										
Total input										

Simplified example: adding a regional disaggregation for imports

		C. A					C. A	Total C. A cons	Export	Total output
		P1a	P1b	P1c	P2a	P2b	fd			
C. A	P1a									
	P1b									
	P1c									
	P2a									
	P2b									
С. В	P1a									
	P1b									
	P1c									
	P2a									
	P2b									
C. C	P1a									
	P1b									
	P1c									
	P2a									
	P2b									
Total										
IMC										
input										
TVA										
Total										
input										

Summary of the disaggregation algorithm

- Aggregate the EU-ICIOT into separate country IOTs
- Derive a first initial estimate based on input coefficients and the column total for each product group
- Apply **GRAS** to balance the initial estimate
 - Constraints: EU-ICIOT, row total (Total domestic use), column total
- Derive a second initial estimate adding the international dimension by splitting the rows according to the region of origin
 - Assumption: internationally traded products have the same sales structures as products of domestic origin
- Apply **GRAS** to balance the second initial estimate
 - Constraints: EU-ICIOT, row total (Domestic use of domestic products, imports), column total
- Move residuals to 'Changes in inventories'
- Combine the country blocks to create the disaggregated MRIO

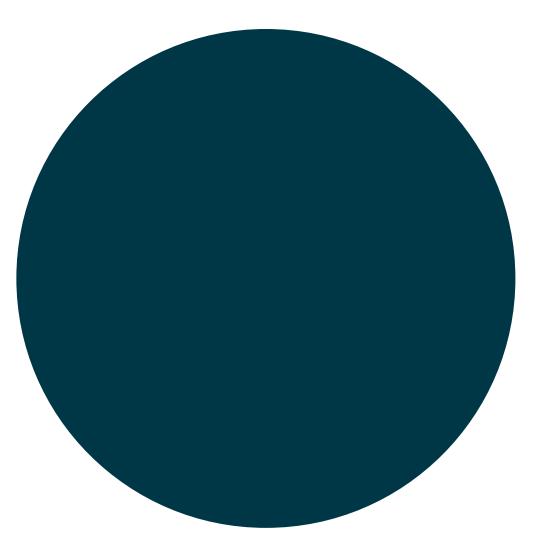
Development of a harmonized hybrid EU-RME MRIO model Technical implementation

- Set of **Python** scripts
- Use of the Numpy package for the actual iterative algorithm
- Use of **Pandas** for data processing
- Currently: 2000 lines of code
- Many checks for validating the internal consistency of data processing

Name	D 35_9	econd_gras.py ×
> 🗁pycache	1	# -*- coding: utf-8 -*-
> 🗁 .spyproject		ини
> 🗁 archive		Created on Thu Apr 13 11:21:45 2023
🔪 🗁 data		<i>Qauthor: Birte Ewers</i>
> 🗁 Jans version		Qautnor: Birte Ewers
> 🗁 reports		
⊢ &initpy		import pandas as pd
- 🚽 01-icio64.py		import tools as to
- 2 02-eurostat download.py		import JW_tools as jw
- 2 2s_3r.py	▲ 11 10	import scipy.io as sio
- 🕹 04-de-miot182.py	12 13	import numpy as np
- 2 05-prodcom.py	13	'''Apply GRAS for the second time to balance the regionally disaggregated
- 2 06-itgs.py	15	detailed IOT to row and column totals and the original MRIO'''
- 20 other_data.py		<pre>ie = to.read('second_initial_estimate')</pre>
- 🔁 10-sbs.py	18	
20-trade.py	19 20	<pre># initial estimate ip = to.read('input ZY') # column sums: (excl. value added and trade with RoW)</pre>
⊢ 👌 21-output.py	20	rs = to.read('row total') # row sums: Total Domestic Use/Total trade (Output +
- 22-input.py	22	io64 = to.read(' <i>icio64</i> ') # aggregated ICIO with 64 sectors
— 🥐 23-tdu.py	23	
- 🤄 30-input_coefficients.py		# reformat ICIO
- 🤄 31-testing_constraints.py	25	<pre>io64 = to.unstack(io64, 'ind')</pre>
- 🔁 32_first_initial_estimate.py		<pre>io64 = to.rename(io64, {'des':'geo'}).pipe(to.sort)</pre>
— 🔁 33_first_gras.py	27 . 28	io64 = io64[io64.lv('pro')!='GVA'] io64 = to.sort(io64)
- 🔁 34_second_initial_estimate.py	20	
— 🥏 35_second_gras.py	30	# bridge tables
— 👌 40-reports.py	31	<pre>br_row = np.load('bridge_row.npy')</pre>
— 👌 41_results.py	32	<pre>br_row = jw.blkdiag_jw(br_row,28)</pre>

Harmonized hybrid EU-RME MRIO model Challenges and open issues

- very large datasets to handle
- missing and confidential data at the detailed product level
- negative numbers at unexpected places in the original EU-ICIOT
- Changes in inventories are used as residual during the original creation of the EU-ICIOT and during our own balancing
- Many of the international data sources need to be downloaded manually which increases the effort for a possible annual update of the model


Harmonized hybrid EU-RME MRIO model Ongoing work

- **1. Preparation of input data** \rightarrow completed for EU countries
- 2. Disaggregation of the monetary EU-ICIOT → completed for EU countries
- 3. Hybridization of the disaggregated EU-ICIOT → spring 2024
- 4. Calculation of material footprints → summer 2024

Thank you for your attention.

