

Motivation

Towards a World Integrated and Socio-economically Balanced European Economic Development Scenario

Horizon Europe Framework Programme (PROJECT: 101056793)

The project studies the recent evolution of Global Value Chains (GVC), with

the aim of understanding the role played by technological transformations

and geopolitical and policy shifts in shaping these changes.

A new trade paradigm?

The New York Times What Is 'Friendshoring'?

Melanie Lambrick

By Sarah Kessler

Breaking down business jargon.

Published Nov. 18, 2022 Updated Jan. 3, 2023

The New York Times

OPINION

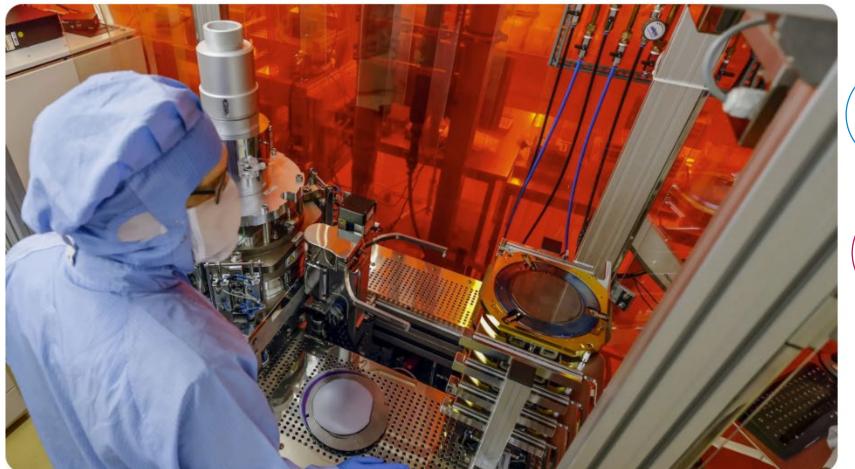
The Era of Offshoring U.S. Jobs Is Over

The pandemic, and Trump's trade policy, are accelerating a trend to bring manufacturing back to America.

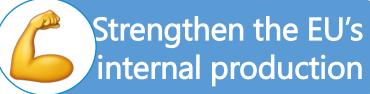
May 11, 2020

©CBS NEWS

Is "Backshoring" the Next Big Trend?



By **Stefan Deeran**Updated on: June 3, 2009 / 1:14 PM EDT / MoneyWatch


A new trade paradigm?

TWIN SEEDS

Open Strategic Autonomy for a competitive and resilient EU

New comercial expansion

Respond to the environmental emergency

Objetives and approach

Effects of GVCs' reorganisation on the environment

To analyse the evolution of carbon emissions, with a particular focus on the EU

To assess the drivers of the changes in the EU's carbon footprint

To identify relocation patterns in GVC and its effects on CO2 emissions

Methodology

Methods and data sources

Effects of GVCs' reorganisation on the environment

TIME SPAN

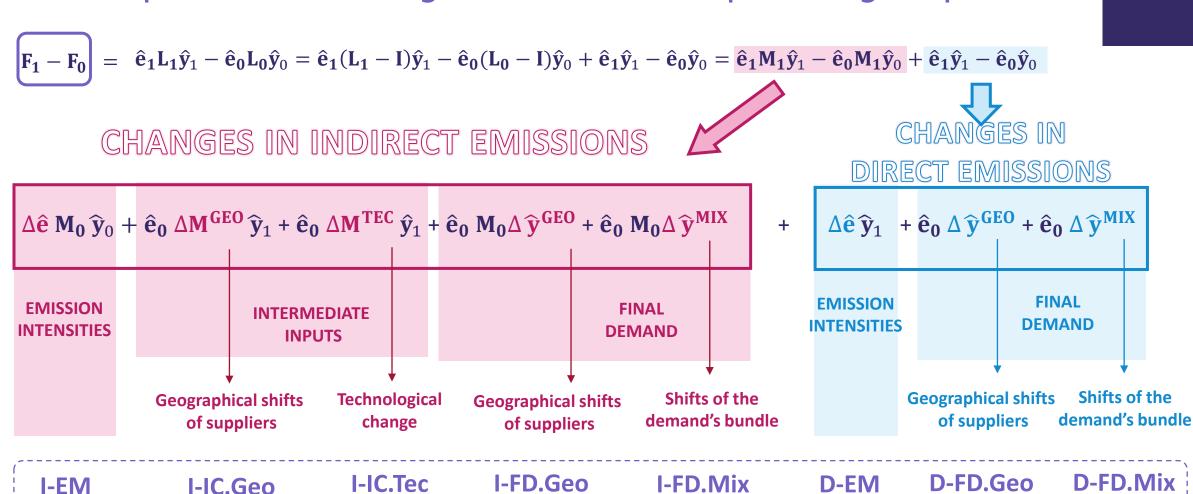
1995-2018

OECD Inter-Country Input-Output (ICIO) Tables

METHODS

Structural decomposition analysis

Relocation measures based on Gao, Hewings & Yang (2022)


Methods: structural decomposition analysis

CHANGES IN:

DUE TO

Full decomposition of the changes in the carbon footprint in a given period

8 components

Methods: quantification of relocation patterns

Full decomposition of changes in the carbon footprint in a given period

8 components

I-EM I-IC.Geo I-IC.Tec I-FD.Geo I-FD.Mix D-EM D-FD.Geo D-FD.Mix

Focus on the changes in the carbon footprint due to geographical shifts of suppliers

Offshoring
Changes after offshoring

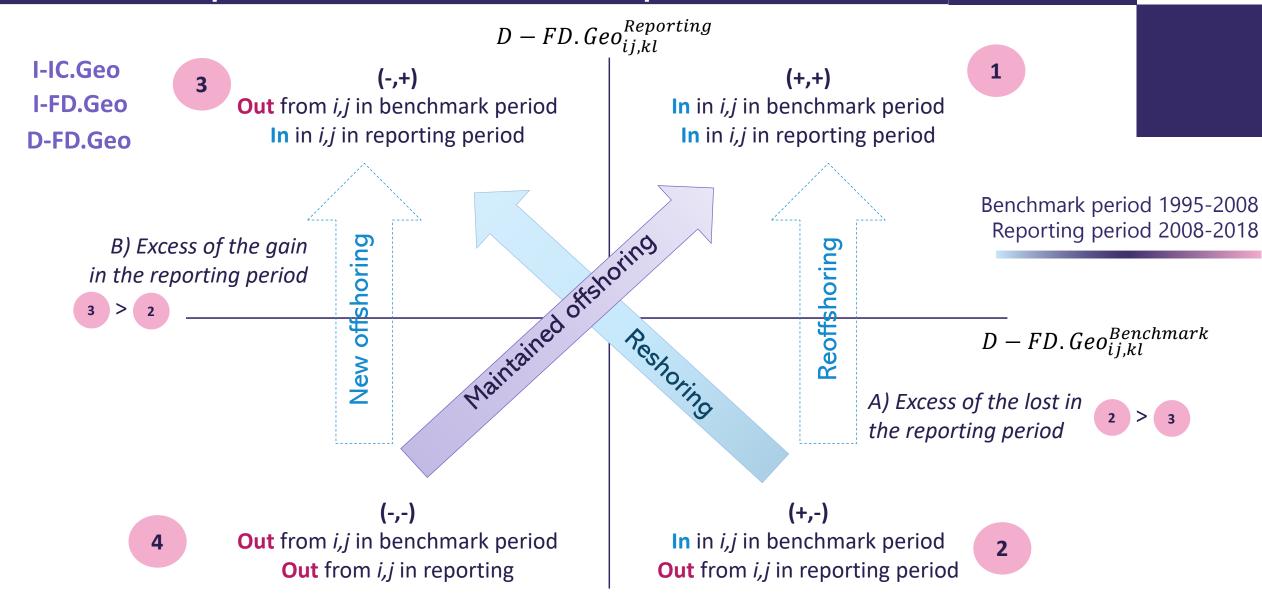
Reporting period

Target: to identify relocation patterns

Maintained /new offshoring

Increased offshoring

Re-shoring = Back-shoring


Return to the home economy

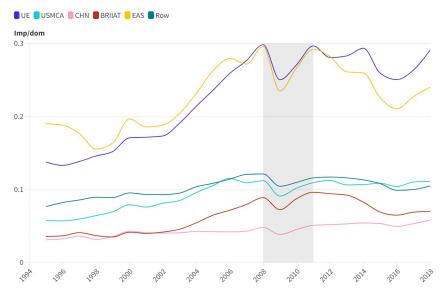
Re-offshoring

Moving previously offshored production to a third economy

Methods: quantification of relocation patterns

Specific measures proposed for supplying economy j once fixed supplying industry i and demanding country l and industry k

Results: evolution of the carbon footprint

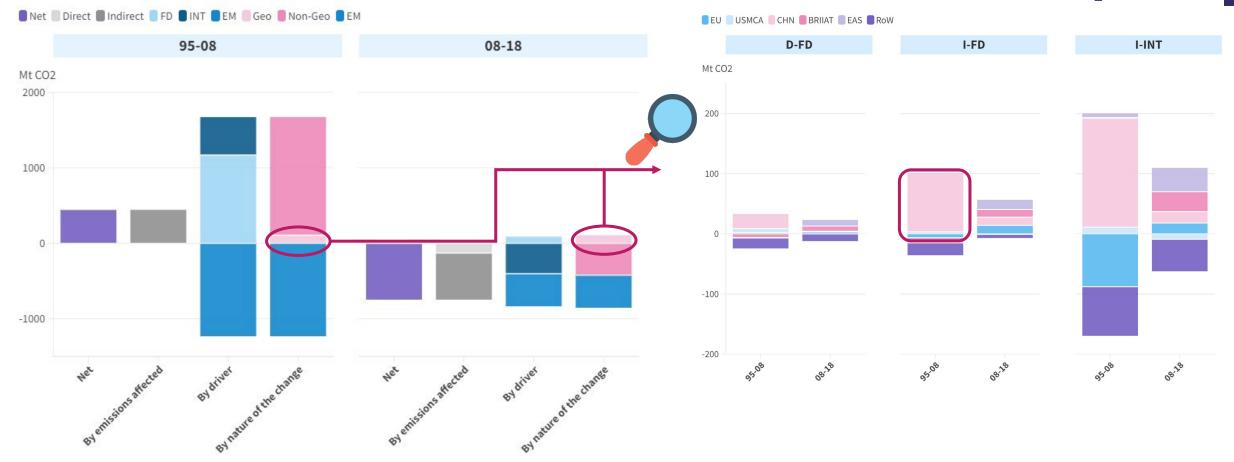

Carbon footprint: growth rates (%)

		1995-2018				1995-2008				2008-2018			
		Domestic part	Imported part	Total footprint	imported/	Domestic part	Imported part	Total footprint	Ratio imported/ domestic	Domestic part	Imported part	Total footprint	Ratio imported/ domestic
ι	JE	-23%	29 %	-10%	68%	-2%	66%	15%	70%	-21%	-22%	-22%	-1 %
ſ	IFT	1%	96%	13 %	94%	15%	104%	26%	78%	-12%	-4%	-10%	s 9%
(HN	236%	377%	246%	42%	104%	135%	106%	15%	65%	103%	68%	23%
E	RIIAT	97%	6 211 %	6 111%	58%	47%	190%	63%	98%	35%	7%	29%	6 -20%
E	AS	23%	25 %	24 %	1%	8%	32%	15%	22%	14%	-6%	5 7 %	6 -1 7 %
F	low	53%	6 101 %	63%	32%	32%	97%	46%	49%	15%	2%	5 11%	6 -12%
1	otal	59%	92 %	65%	21%	33%	88%	43%	41%	20%	2%	16%	-14 %

CO₂ emissions multiplier: growth rate 1995-2018 (%)

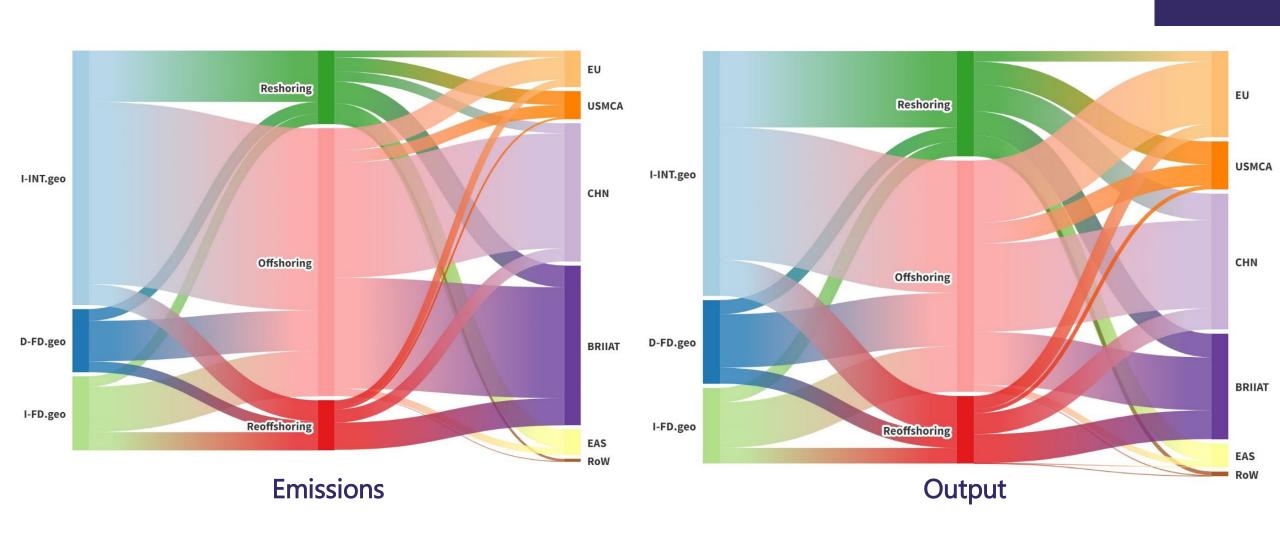
	Growth rate 1995-2018 (%)							
	Domestic	Imported	Total					
UE	-44.28%	13.06%	37.03%					
USMCA	-42.82%	3.72%	40.13%					
CHN	-30.05%	14.99%	28.54%					
BRIIAT	-29.55%	22.87%	27.56%					
EAS	19.41%	47.28%	<mark>23.</mark> 91%					
Row	53.41%	97.34%	56.72%					

Ratio Imported part/domestic part of the CO2 multiplier



Results: decomposition of the changes in the carbon footprint

Decomposition of changes in EU's CF. 1995-2008 and 2008-2018, MtCO₂


Focus on changes in EU's CF due to geographical shifts of suppliers. 1995-2008 and 2008-2018, MtCO₂

Results: trade-restructuration patterns

Relocation patterns of emissions vs. output by shifts of suppliers, 2008-2018 (taking 1995-2008 as benchmark), MtCO₂

Discussion

Discussion

Global carbon emissions

1995 to 2018

- Rise in imported emissions
- Mainly due to the trends in the subperiod 1995-2008

Domestic emissions

Imported emissions

Decomposition of the reduction in the EU's FP

- Indirect emissions
- CO₂ intensities

Relocation trends increased the footprint in all the periods

- Offshoring as the predominant one
 - More intensive in CO₂ than the backshored production

Thank you for your attention

